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Fig. 2 shows the crystal structures. In trans-(IV) 
nearest neighbouring anthryl groups, which are 
related by a centre of symmetry, interact with van 
der Waals contacts. Although the distance between 
the least-squares planes is ca 3.4 A, one anthryl 
group is significantly displaced with respect to the 
other along both the long and short axes of the 
anthracene, and as a result only a part of the anth- 
racene moiety is involved in the rr-rr interaction. 
The close contacts are C(1). . .C(lY)=3.604(5),  
C ( 1 ) . . . C ( 1 4  i) = 3.613 (5), C(2)...C(11 ~) = 3.616 (5), 
C(2)...C(12 i) = 3.384 (5), C(2).-.C(13 i) = 3.227 (5)and 
C(3)...C(13 i) = 3.663 (5) ,~ (i = - x ,  y, 2 - z). In 
cis-(I), cis-(III) and cis-(IV) there are no stacking 
interactions observed between the anthryl groups in 
the nearest neighbouring molecules. The crystal 
structures of the four compounds explain the lack of 
reactivity for [4+4] photodimerization of anthryl 
groups in the solid state. 
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Abstract 

The crystal structures of the ethanol and the ethyl 
acetate inclusion compounds of TATM, CH(C6- 
H5OS)3, were originally reported in space group P1, 
with two independent TATM molecules and one 
solvent molecule in the unit cell. However, the pairs 
of TATM molecules are closely related by centers of 
symmetry and the structures are better described in 
space group P1. Refinements in P i  led to lower 
e.s.d.'s and R values and to much more reasonable 
bond lengths, angles and Uo.'s for the TATM mol- 
ecules; however, the solvent molecules are disordered 
and can be described no better in P1 than they were 
in P1. 

Introduction 

Dillen, Roos and van Rooyen have now reported the 
crystal structures of four inclusion compounds of 

* Contribution No. 8771. 
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tris(5-acetyl-3-thienyl)methane, TATM, in which sol- 
vent molecules are enclathrated within a framework 
of TATM host molecules. In the case of the n-hexane 
solvate, the ratio of TATM to solvent is 3:1 (Roos & 
Dillen, 1992); in the other three examples [benzene 
(van Rooyen & Roos, 1991b), ethyl acetate (van 
Rooyen & Roos, 1991a) and ethanol (Dillen & Roos, 
1992)] the ratio is 2:1. In the latter two cases, ethyl 
acetate and ethanol, the structures were described in 
space group P1, with two molecules of TATM and 
one of solvent in the unit cell. However, in both cases 
the two TATM molecules are closely related by a 
center of symmetry and refinement in P1 led to 
improbable values for many bond lengths and 
angles, presumably due to the large correlations 
inherent in the refinement of a nearly centrosym- 
metric model in a noncentrosymmetric space group. 
Refinement in P1, which requires the guest solvent 
molecules to be disordered, seems preferable, leading 
to improved R values and reasonable distances and 
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Table 1. Ethyl acetate compound: coordinates, space 
group P1 

x ,  y ,  z and U~q x 10 4. 

Ucq = ( 1/3)~, ~i U,,a ,*a ,*a ,  .a i. 

x y z Uc, 
C(1) 3454 (3) 3183 (3) 4061 (4) 440 (8) 
S(I) 3510 (I) 3383 (I) 9033 (1) 502 (2) 
C(2) 3525 (3) 2715 (3) 7031 (5) 478 (9) 
C(3) 3526 (3) 3515 (3) 5959 (4) 413 (8) 
C(4) 3524 (3) 4725 (3) 6779 (5) 451 (8) 
C(5) 3513 (3) 4794 (3) 8441 (5) 444 (8) 
C(6) 3482 (3) 5858 (3) 9710 (5) 522 (9) 
O(1) 3445 (3) 5725 (3) 11136 (4) 694 (8) 
C(7) 3461 (5) 7060 (4) 9142 (7) 772 (13) 
S(2) 4879 (I) 420 (1) 2408 (I) 524 (2) 
C(8) 3837 (3) 1261 (3) 2371 (5) 494 (9) 
C(9) 4158 (3) 2236 (3) 3751 (4) 406 (7) 
C(10) 5287 (3) 2286 (3) 4852 (4) 419 (8) 
C(I I) 5793 (3) 1368 (3) 4307 (4) 433 (8) 
C(12) 6924 (3) 1114 (3) 5100 (5) 505 (9) 
0(2) 7259 (3) 262 (3) 4432 (4) 721 (8) 
C(13) 7662 (4) 1925 (5) 6788 (6) 752 (13) 
S(3) 207 (I) 2885 (1) 926 (2) 682 (3) 
C(14) 1646 (3) 3499 (4) 1909 (5) 569 (10) 
C(15) 2185 (3) 2800 (3) 2953 (4) 434 (8) 
C(16) 1411 (3) 1722 (3) 2954 (5) 472 (8) 
C(17) 309 (3) 1643 (4) 1916 (5) 496 (9) 
C(18) -745 (3) 681 ~4) 1534 (5) 578 (10) 
0(3) - 1641 (3) 768 (3) 503 (4) 903 (I 1) 
C(19) -688 (4) -371 (4) 2440 (6) 736 (13) 
C(39)* 469 (17) 3689 (33) 6449 (57) 1924 (138) 
C(40)* - 153 (13) 4076 (15) 5292 (19) 943 (45) 
0(7)* - 1247 (8) 4011 (11) 4707 (13) 1370 (35) 
0(8)* 413 (9) 5136 (13) 5027 (19) 1403 (42) 
C(41)* -262 (18) 5672 (17) 2901 (32) 1369 (64) 
C(42)* -452 (22) 6689 (25) 3853 (28) 1146 (53) 

* Populat ion,  0.5. 

angles within the TATM molecules; because of the 
disorder, however, the solvent molecules cannot be 
described with confidence. 

RR refined the coordinates and average B's of some 
of the H atoms, whereas I placed them in fixed, 
calculated positions. Difference maps in the planes 
containing the methyl H atoms were ambiguous as to 
the orientations, so these atoms were assigned to two 
sets of half-populated sites. H atoms of the included 
ethyl acetate molecule were ignored.) The final P i  
coordinates are given in Table 1. 

The new refinement has led to entirely reasonable 
bond lengths and angles within the host TATM 
molecule, equivalent values within the three 5-acetyl- 
3-thienyl (ATM) moieties agreeing nearly as well as 
the e.s.d.'s would predict. The same cannot be said 
of the guest ethyl acetate molecule, which is perforce 
disordered through a center of symmetry. Because of 
this disorder and the overlap that results (see Fig. 1), 
refinement of the individual atoms, especially with 
anisotropic Uifs, was probably inappropriate; how- 
ever, convergence to a not totally unreasonable 
model resulted and I could find no better way to 
represent the solvent area. The final coordinates of 
the solvent atoms (Table 1) are similar to those 
reported by RR; the same problems of overlap in the 
solvent area must also have pervaded the P1 
refinement (RR), since the structure is very nearly 
centrosymmetric no matter how it is described and, 
accordingly, large correlations could not have been 
avoided. 

2 TA TM. EtOH 

Triclinic; a = 12.488 (5), b = 10.372 (5), c = 
8.335 (5) A, a = 84.95 (5), /3 = 108.74 (5), y =  
98.51 (5) °, Z - -  1 (Dillen & Roos, 1992; hereinafter, 
DR). The structure was refined in space group P1 to 

2 TA TM. EtOAc 

Triclinic; a = 12.329 (5), b = 11.229 (5), c = 
8.229 (5) A, a = 9 8 . 4 2 ( 5 ) ,  /3=106.43(5),  y =  
99.05 (5) °, Z = 1 (van Rooyen & Roos, 1991a; here- 
inafter, RR). The PI structure was refined to an R 
value of 0.084 for 4198 reflections (RR). Many 
details of the resulting structure were surprising; for 
example, the six structurally independent but 
chemically equivalent C - - C  bonds to the central 
atom C(1) showed lengths ranging from 1.453 (8) to 
1.638 (6)A; there were large irregularities in the 
bond angles and the Ueq values as well. After 
recasting the structure in P1 (by moving the origin 
to the approximate center between the two TATM 
molecules and averaging the coordinates of equiva- 
lent atoms), full-matrix least-squares refinement led 
to an R value of 0.082 for 4182 reflections recovered 
from SUP 54245 (16 reflections with Fob s values of 
0.0 were deleted). The total number of parameters 
was 281, compared to 625 reported by RR. (The 
reason the ratio is not approximately 1:2 is because 

0(7) ~ 

Fig. 1. Ethyl acetate complex: electron-density map through most 
of the major features of the solvent area. Contours are at 1.0 
and 2.0 e / ~  3; the center of  the map is at (0, ~, ~). The terminal 
methyl group C(42) lies about  0.8/~ from this plane. The two 
disordered centrosymmetrically related molecules are indicated 
by solid and by dashed lines. 
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Table 2. Ethanol compound: coordinates, space group 
PT 

x, y, z and U~q x 10 4. 

U~q = (1/3)3-, 3-j Uija,*ai*a i .a, 

x y z UCq or B 
C(I) 1736 (3) 1677 (4) 882 (4) 406 (8) 
S(1) 173 (1) 4509 (1) -2249 (i) 484 (2) 
C(2) 1286 (3) 3684 (4) - 1122 (5) 433 (8) 
C(3) 967 (3) 2650 (3) - 169 (4) 375 (8) 
C(4) - 208 (3) 2539 (4) - 360 (4) 386 (8) 
C(5) -755 (3) 3467 (3) - 1445 (4) 390 (8) 
C(6) - 1954 (3) 3662 (4) - 1966 (5) 472 (9) 
O(1) -2314 (3) 4530 (3) -2991 (4) 668 (8) 
C(7) - 2729 (4) 2756 (5) - 1211 (7) 749 (14) 
S(2) 4886 (1) 1985 (1) 485 (2) 684 (3) 
C(8) 3518 (3) 1328 (4) 251 (5) 546 (10) 
C(9) 2963 (3) 2033 (4) 945 (5) 423 (8) 
C(10) 3685 (3) 3150 (4) 1711 (5) 459 (9) 
C(ll)  4754 (3) 3272 (4) 1575 (5) 496 (9) 
C(12) 5720 (3) 4284 (4) 2110 (6) 574 (11) 
0(2) 6572 (3) 4266 (4) 1726 (5) 898 (11) 
C(13) 5643 (4) 5341 (5) 3155 (7) 785 (15) 
S(3) 1549 (1) 1777 (1) 5620 (1) 545 (3) 
C(14) 1608 (4) 2374 (4) 3671 (5) 495 (9) 
C(15) 1636 (3) 1439 (3) 2656 (4) 378 (8) 
C(16) 1593 (3) 198 (4) 3485 (5) 420 (8) 
C(17) 1548 (3) 212 (4) 5103 (5) 444 (9) 
C(18) 1506 (4) -850 (4) 6364 (5) 531 (10) 
0(3) 1459 (3) -630 (3) 7744 (4) 700 (9) 
C(19) 1562 (5) - 2201 (5) 5916 (6) 782 (15) 
Et(l) 5000 0 5000 3378 (152) 
Et(2)* 4639 (20) 793 (22) 5970 (28) 19.7 (8)t 
Et(3)* 4323 (24) - 1135 (26) 4834 (34) 25.7 (12)~ 

* Populat ion,  0.5. 
t Isotropic displacement parameter ,  B. 

said in favor of these positions is that they survived 
least-squares refinement to convergence; other 
arrangements of the ethanol molecule can well be 
imagined, but my attempts at modeling them were 
never satisfactory. There is clearly a guest present 
and studies of the very low-order reflections clearly, 
indicated that, in this region of the structure (near ~, 
0, ~), about as many electrons as are present in an 
ethanol molecule are needed in order to match the 
Fc.~c with the Fobs. There is no reason to doubt the 
presence of an enclathrated ethanol molecule, but its 
orientation within the cavity is unclear. 

Final PI  coordinates for the heavy atoms are in 
Table 2.* 

Discussion 

Unlike the earlier P1 results (DR; RR), refinements 
of these two structures in P1 have led to an entirely 
reasonable and apparently quite accurate description 
of the host TATM molecule. Formal coordinate 
e.s.d.'s are considerably smaller than reported earlier; 
more importantly, agreement among chemically 
equivalent bond lengths, angles and U~/'s is satisfac- 
tory whereas it was not before. 

Quite conclusive evidence for the centrosymmetric 
description of the ethyl acetate compound can be 
found in an examination of the very weak reflections. 
Included in SUP 54245 are Fob, and Fca~c values for 

an R value of 0.097 for 3786 reflections. Once again 
there were anomalies in the bond lengths and angles, 
chemically equivalent distances differing by as much 
as 0.26 (3)A; moreover, the C - - C  and C - - O  bond 
lengths in the enclathrated ethanol molecule needed 
to be constrained. Refinement in P] was based on 
the 3786 reflections recovered from SUP 55295. At 
convergence, R was 0.094 for 240 parameters, com- 
pared with 483 parameters for the P1 model (DR); in 
both cases the H-atom positions were assumed. Once 
again the P]- refinement led to a completely satisfac- 
tory TATM molecule but to confusion for the guest 
ethanol molecule. Final coordinates are in Table 2. 

Attempts to model the guest ethanol molecule 
were frustrating and unsatisfying (as apparently had 
also been the case for the earlier P1 model, since 
constraints were needed). An electron-density map 
through the major features in this region of the 
structure is shown in Fig. 2, together with the atom 
positions that were finally settled upon. [Note that 
the two maxima in Fig. 2 are not coincident with 
atom centers; rather, they are accounted for by 
overlap represented by the large B's of the three 
atoms and, in particular, by the very large aniso- 
tropic coefficients U o of the central atom Et(l), 
which lead to an r.m.s, displacement of nearly 0.9 A 
in that direction.] Perhaps the only thing that can be 

* Lists of  s tructure factors, U,,'s, coordinates  and B's tbr the H 
atoms, and bond lengths and angles for both  compounds  have 
been deposited with the British Library Document  Supply Centre 
as Supplementary  Publication No. SUP 71495 (28 pp.). Copies 
may be obtained through The Technical Editor,  Internat ional  
Union o f  Crystal lography.  5 Abbey Square. Chester CHI  2HU.  
England. [C1F referencc: CR0456] 

Fig. 2. Ethanol  complex: electron-density map in the plane o f  the 
major  features o f  the solvent area. Contours  are at 0.5, 1.0, !.5 
and 2 . 0 e , ~  ~. The center o f  the map is at (~. 0, ~). The two 
disordered centrosymmetr ical ly  related molecules are indicated 
by solid and by dashed lines. 
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274 reflections with Fobs = l e (all values were 
reported as integers). For these 274 reflections, the 
earlier P1 description led to an average value of Fca~c 
of 1.99 e and to an R value of 1.09; on the other 
hand, the P1 model derived here leads to an average 
Fcalc of 1.03 e and an R value of 0.59. As has been 
noted many times (see, e.g., Marsh, 1981), it is these 
very weak reflections that are most sensitive to the 
centrosymmetric-noncentrosymmetric ambiguity and 
the convincing evidence found in this case leaves 
little doubt that the centrosymmetric description is 
preferable. The weakest reflections were not available 
for the ethanol compound, so a comparable test 
could not be done.* 

The four crystallographic studies that Dillen, Roos 
and van Rooyen have carried out represent seven 
independent TATM molecules - two for the benzene 
adduct (van Rooyen & Roos, 1991b), three for n- 
hexane (Roos & Dillen, 1992) and one each for the 
ethanol and ethyl acetate compounds discussed here. 
Since each TATM molecule has three 5-acetyl-3- 
thienyl moieties (Fig. 3), there result 21 independent 
determinations of the bond lengths and angles within 
these ATM moieties. I have calculated the weighted 
averages of these bond lengths and angles, the e.s.d.'s 
of the averages, and the goodness-of-fit values based 
on the assumption that all 21 measurements are 
equivalent. The results are summarized in Table 3. 
For the bond lengths and the internal ring angles the 
average goodness-of-fit (GoF) is about 1.6, quite 
consistent with the conventional lore that formal 
e.s.d.'s emerging from crystallographic studies tend 
to be low by approximately this factor. For the 

* It has been brought to my attention that Nordman & 
Schmitkons (1965) have proposed a somewhat similar test for 
centrosymmetry: a consideration of  the dependence of  the ratio of  
observed to calculated structure amplitudes on the calculated 
phase angle. As the phase angle departs from 0 or 180 °, the 
relative contribution of  the antisymmetric component of  the calcu- 
lated structure factor - the B term - becomes larger, as must 
IFcaicl itself. This effect is most pronounced, of  course, for the 
very weak reflections and I urge once again that all reflections be 
retained if there is a space-group ambiguity of  this sort. 

]: ~ c) ((_) 

- i-" ' 

Fig. 3. A 5-acetyl-3-thienylmethyl (ATM) grouping, showing the 
numbering scheme used in Table 3. Atoms C(9) and C(15) 
belong to other thienyl rings and are chemically equivalent to 
C(3). 

Table 3. Bond lengths and angles for the 5-acetyl-3- 
thienylmethyl grouping 

Values were obtained from weighted averages of  21 sets of  values 
from four TATM crystal structures. The e.s.d.'s of  the average 
values, in parentheses, have been multiplied by the goodness-of-fit 
(GoF)  values, which were obtained from the sums of  the weighted 
squares of  deviations of the 21 individual values from their 
weighted average. For atom identification see Fig. 3. 

Bond type Length (A) G o F  
C(1)--C(3) 1.517 (2) 1.3 
C(2)---C(3) 1.359 (2) 1.4 
C(3)--C(4) 1.417 (2) 1.4 
C(4)----C(5) 1.369 (2) 1.6 
S(1)--C(2) 1.707 (2) 1.6 
S(1)--C(5) 1.723 (2) 2.2 
C(5)--C(6) 1.466 (3) 1.9 
C(6)--C(7) 1.496 (2) !.3 
C(6)--0(1) 1.216 (2) 0.9 

Angle type Value (°) G o F  
C(3)--C(1)--C(9) I 11.9 (4) 3.6 
C(1)--C(3)--C(2) 124.9 (3) 3.0 
C(1)--C(3)--C(4) 123.5 (3) 2.7 
C(2)--C(3)--C(4) 111.5 (2) 1.6 
C(3)--C(4)--C(5) I 13.2 (2) 2.0 
C(3)--C(2)--S(1) 112.8 (2) 1.6 
C(2)---S(1)---C(5) 91.5 (1) 1.6 
S(1)--C(5)--C(4) l ll.O (2) 2.0 
S(1)--C(5)--C(6) I 19.3 (3) 2.8 
C(4)--C(5)--C(6) 129.7 (2) 1.8 
C(5)---C(6)--O( l ) 120.5 (2) 1.5 
C(5)--C(6)--C(7) 118.3 (2) 2.0 
C(7)--C(6)--4)(1 ) 121.2 (2) 1.5 

external angles at C(3) and C(5) and especially at 
C(1) the GoF's  are markedly larger, clearly suggest- 
ing that the variations are real and, hence, that the 
molecules undergo various types of flexing as they 
pack together so as to form the cavities appropriate 
for the particular solvate molecules. Thus, the 21 
measurements of these exterior angles cannot be 
considered as equivalent observations and there is 
some danger in trying to establish standard values 
for them. However, the bond lengths and the angles 
within the rings can be accepted with good confi- 
dence; one notes, for example, a significant difference 
between the two C- -S  bond lengths. 

But probably of more interest is the clathrating 
behavior of the TATM molecule. In forming cages 
for four different solvent molecules - benzene (van 
Rooyen & Roos, 1991b), hexane (Roos & Dillen, 
1992), ethyl acetate (RR) and ethanol (DR) - the 
structure selects each time a different triclinic cell, 
space group P1. [The axial lengths of the ethyl 
acetate and ethanol compounds are similar, as are 
the projections of the structures onto (001), but they 
are far from isostructural.] Thus, the compound can 
form at least four different types of cages, depending 
on the size and shape of the captured solvent. Yet 
these solvent molecules pack very loosely: in all four 
cases the Ueq values of the solvent atoms are large 
(0.12 A 2 or more) and in the cases of ethanol and 
ethyl acetate described here the noncentrosymmetric 
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Table 4. Bond lengths and angles in the solvent 
molecules as obtained f rom the least-squares 

refinemen ts 

As a result of the disorder, these numbers are not to be trusted 
(see text). 

Distance (A) Angle (°) 
Ethyl acetate compound 
C(39)---C(40) 1 . 2 2  O(7)---C(40)--C(39) 134 
C(40)--O(7) 1 .28  O(8)---C(40)--C(39) 111 
C(40)---O(8) 1 . 3 6  O(8)---C(40)--O(7) 109 
O(8)---C(41) 1 . 9 4  C(41)--O(8)--C(40) 118 
C(41)--C(42) 1 . 3 8  C(42)---C(41)--O(8) 89 

Ethanol compound 
Et(1)--Et(2) 1.41 
Et(l)---Et(3) 1.33 

Et(3)--Et(l)--Et(2) 108 

guest molecule is disordered within the centrosym- 
metric cavity. Given the obvious ability of the 
TATM molecule to form cavities of several sizes and 
shapes, it seems surprising that the enclosed solvent 
does not fit in more tightly, particularly in the case of 
a polar solvent such as ethanol, which might be 
expected to form a hydrogen bond with an acetyl 
group of TATM. That this is not the case is clearly 
shown in Fig. 2: there is no concentration of electron 
density toward the outer region of the solvent area, 
where a localized - - O H  would surely lie. Nor does 
any acetyl O atom lie within 4 A  of any of the 
solvent atoms as finally positioned; the nearest neigh- 
bors to the solvent are a methyl group C(7) of one 
TATM molecule and a ring atom C(5) of another, at 
about 3.5 A. 

Two final comments. (1) It is doubtful - particu- 
larly in the case of the ethanol compound - that the 
coordinates assigned to the solvent atoms bear much 
resemblance to reality (see Fig. 2). It seems quite 
clear that these ethanol molecules occupy many dif- 
ferent sites and are quite likely in dynamic flux at 
room temperature. The situation with respect to the 
ethyl acetate compound is somewhat clearer (Fig. 1), 
but by no means satisfactory. To demonstrate more 
clearly the situation, the bond lengths and angles 
calculated from the final parameters of the solvent 
atoms are given in Table 4; they are not dignified 

with e.s.d.'s (which, formally, are in the range 0.03- 
0.04 A). There were similar problems in the earlier 
P1 refinements (DR; RR). (2) As in all cases of this 
type, the choice between space groups P1 and P1 is 
not a clear one, since diffraction intensities are incap- 
able of detecting any small deviation from centro- 
symmetry. I can find no indication that either of 
these structures could be better described in P1; for 
example, the host (TATM) atoms lying at the edges 
of the solvent cavities do not show the anomalous 
Uo.'s that would be expected if they actually lay in 
two sets of positions (as would be necessary to create 
a noncentrosymmetric cavity). And if correct P1 
structures exist, it is clear, from the anomalous bond 
lengths, that the earlier refinements did not conw,=ge 
to them. The advantages of the P1 descriptions seem 
overwhelming. 

Computational details 

All calculations were carried out on a VAXStation 
3100 under the C R Y M  system (Duchamp, 1964). 
Full-matrix least squares was based on the minimi- 
zation of the quantity V'w(Fo 2 - F~2) 2, with weights w 
assigned according to Hughes (1941). Final shifts 
were never greater than 0.05tr; excursions in final 
difference maps never exceeded 0.4 e A - 3. Fig. 3 was 
prepared with the help of O R T E P I I  (Johnson, 1976). 
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